Algoritmos de Enjambre para la Optimización de HMM en la Detección de Soplos Cardíacos en Señales Fonocardiográficas Usando Representaciones Derivadas del Análisis de Vibraciones

QRCode
Share this
Date
2016Publisher
Instituto Tecnológico MetropolitanoCitation
Metadata
Show full item recordPDF Documents
Abstract
Este trabajo presenta una metodología para desarrollar un sistema automático de apoyo en la clasificación de señales fonocardiográficos (PCG). En primer lugar, las señales PCG fueron pre-procesadas. Luego descompuestas por medio de la técnica descomposición modo empírico (EMD) con algunas de sus variantes y el análisis de vibración por descomposición de Hilbert (HVD) de forma independiente, donde se comparó el costó computacional y el error en la reconstrucción de la señal original generando constructos a partir de las IMFs. A continuación, se extrajeron las características con los momentos estadísticos de los datos generados por la transformada de Hilbert-Huang (HHT), además de los coeficientes cepstrales en las frecuencias de Mel (MFCC) y cuatro de sus variantes. Por último, un subconjunto de características fue seleccionado usando conjuntos de aproximación difusos (FRS), análisis de componentes principales (PCA) y selección secuencial flotante hacia adelante (SFFS) de manera simultánea para ser utilizadas como entradas del modelo oculto de Markov (HMM) ergódico ajustado con optimización por enjambre de partículas (PSO), con el fin de proporcionar un mecanismo objetivo y preciso para mejorar la fiabilidad en la detección de soplos en el corazón, obteniendo resultados en la clasificación de alrededor del 96% con valores de sensibilidad superiores a 0.8 y de especificidad mayores a 0.9, utilizando validación cruzada (70/30 con 30 fold)
Abstract
This study presents a methodology for developing an automated support system in the classification of phonographic signals (PCG). First, the PCG signals were preprocessed. You then decomposed by the decomposition technique empirically (EMD) with some of its variants and vibration analysis by decomposition of Hilbert (HVD) independently, where the computational cost and the error was compared in the reconstruction of the original signal generating constructs from IMFs. Then the characteristics of the statistical moments data generated by the Hilbert-Huang Transform (HHT), plus cepstral coeffcients at frequencies of Mel (MFCC) and four of its variants were extracted. Finally, a subset of features was selected using sets of fuzzy approximation (FRS), principal component analysis (PCA) and floating sequential forward selection (SFFS) simultaneously to be used as inputs to the hidden Markov model (HMM) ergodic adjusted particle swarm optimization (PSO), in order to provide an objective and accurate to improve reliability in detecting heart murmurs mechanism, obtaining results in the classification of about 96% with sensitivity values higher 0.8 and higher specificity to 0.9, using cross-validation (70/30 split with 30 fold)